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Lagrangian and Eulerian Derivatives and the Temperature Tendency 
Equation  

A.  The Total Derivative 

The total derivative estimates the change of a dependent variable (say, 
temperature) in, say, an air parcel no matter where it is and no matter whether it is 
moving or not.  This air parcel can be visualized as having a coordinate system 
fixed with respect to it.   

But that change can be related to the partial contributions of the changes that occur 
with respect to time and space measured relative to coordinate systems fixed with 
respect to the surface of the earth.   

The total change of any variable, say temperature, can occur in time and in space.   
Since the Cartesian coordinate system has three axes, this can be expressed 
algebraically by (1a) and in calculus notation by (1b).  Usually, in calculus text 
books the general symbol f is used for the dependent variable. 
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Equation (1) states, conceptually, that the total change in temperature, T,  is 
directly related to the rate of change of T in time and space.    You can see how the 
calculus notation makes the equation easier to work with.   

B.  The Lagrangian and Eulerian Derivatives 

To make an expression more useful to meteorologists (and oceanographers), one 
can use the rules of calculus and divide both sides of (1) by the differential dt to 
obtain the so-called “total derivative” of T.  Note that now the partial derivatives 
also have an interpretation of “as measured with respect to a coordinate system 
fixed with respect to the surface of the earth” while the conventional derivative 
notation indicates measure as if the coordinate system moves with the moving 
object, in this case, an air parcel. 
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But, in  ERTH 260 (Metr 201) we learned that the definition of the wind 
components in the cartesian coordinate system is: 
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,  w = dz
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    (3) 

where u is the west (negative u is east) wind, v is the south (negative v is north) 
wind and z is the up (negative z is down) wind component. 

Substitute (3) into (2) and we have the equation for the so-called Lagrangian (or 
material) Derivative1 form of the total derivative, where (4b) is the expression in 
vector calculus notation. 
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1	Please	note	that	in	some	books	the	Lagrangian	Derivative	is	still	referred	to	as	the	total	
derivative	and	will	appear,	even	in	some	meteorology	texts,	as	dT/dt.	
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DT
Dt

 is known as the Lagrangian derivative

Since we are applying the concept of the total
derivative to fluid motion, we use the capital D
to indicate special application of the total derivative
to fluid motion.  It is interpreted as 
the change of temperature, in this case, measured following
the motion of the parcel.

		

	

∂T
∂ t

 is known as the local or Eulerian derivative

and is interpreted as the change in temperature
measured at a fixed location, for example, San
Francisco Airport.
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is known as temperature advection (usually brought to
the other side of the equation so it will have a negative
sign.  This measures the contribution to local temperature
change that occurs when air of different temperatures is
brought into an area.
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C.  The Simplified Temperature Tendency Equation 

Commonly, in weather forecasting, equation (4) is used generally with ANY 
variable that can characterize the state of an air parcel (for example, temperature, 
pressure, mixing ratio, humidity etc.) substituted for “f” and is solved for the local 
derivative.  This yields an equation that allows us to forecast f at a fixed location. 
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−
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V •∇f

      (5) 

 

 

−
!
V •∇f   is known as the advective derivative (or just

as advection).  It measures the contribution to the change
in f observed locally because of fluid with a different value
of f (than the initial value) being brought to the  observing
site.

 

 

Any variable can be substituted for f, as we have already done so, for temperature 
or T. 
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   (5a, b) 

or solving for the local derivative. 
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      (7) 

Equation (7) is called the simplified Temperature Tendency equation.  This 
equation allows one to make a deterministic temperature forecast for a location by 
multiplying both sides by the time increment over which the forecast is to be made.   

Please note that the far right term of equation (7) represents the three dimensional 
temperature advection.   
 

 −
!
V •∇T = Three Dimensional Temperature Advection  

It relates the temperature observed by a thermometer at a fixed location to the 
changes in temperature in the air parcels themselves and the horizontal and vertical 
advection of parcels with differing temperatures to that location.  In most 
applications, the vertical temperature advection term is very small and can be 
dropped out on order of magnitude basis.

  
When this term is evaluated, it can yield a positive result (temperature increases 
due to temperature advection known as ‘warm advection’) or  a negative result 
(temperature decreases due to temperature advection are known as ‘cold 
advection’).  But the advection is calculated INCLUDING the algebraic negative 
sign at the front of the expression.

 

 


