Faculty

John Caskey
Petra Dekens
David Dempsey
Oswaldo Garcia
Toby Garfield
Karen Grove

Jason Gurdak
Mary Leech
John Monteverdi
David Mustart
Ray Pestrong
Leonard Sklar

Lecturers

Matthew Horrigan
Jan Null
Bridget Wyatt

Adjunct Faculty

Leora Nanus
Lisa White
Dana Wingfield

Emeritus Faculty

Charles Bickel
Jon Galehouse
Jim Kelley
Steve Kirsch

York Mandra
Erwin Seibel
Ray Sullivan
John Tyler

Faculty






John Caskey
Associate Professor of Geology
B.A. Geology - Humboldt State University
M.S. and Ph.D. Geology - University of Nevada, Reno
At SFSU since 1998
Phone: (415) 405-0353
Office: TH 616
E-mail: caskey@sfsu.edu

Personal Website


Research and/or Teaching Area:  Neotectonics, seismotectonics of coastal central California and Nevada

I continue to involve students in my summer research out in central Nevada focusing on a variety of recent and ongoing projects such as: patterns and rates of paleoseismicity in the central Nevada seismic belt; characteristics of active faults in relation to geothermal resources in the Basin and Range; paleoliquefaction in the Stillwater seismic gap; and pluvial lake histories and using pluvial lake shorelines as tiltmeters to measure isostatic and tectonic deformation. Much of the work we’ve accomplished over the past few years has recently come to fruition through manuscripts either accepted or submitted to the Bulletin of the Seismological Society of America and the Journal of Geodynamics. I’ve organized and participated in a number of field trips the past few years; none more exciting and rewarding than the 2003 Annual Pacific Cell Friends of the Pleistocene field trip to Dixie Valley, Nevada. In keeping with tradition, the Friends trip was an epic experience, camping out under a star-filled desert sky and full moon with over 200 crazy students and professionals for three days and nights. The aspects of historical faulting, paleoseismology, and chronostratigraphy of the central Nevada seismic belt we presented seemed to go over pretty well too. It’s been a fun teaching majors’ courses in Structural Geology, Field Methods, Neotectonics, and a non-majors course on earthquakes, working with students on their thesis research, and spending most of the summer months in the field trying to keep my research progressing, often in new directions. In the last few years I’ve had the privilege of working with some talented and enthusiastic M.S. and B.S. students on interesting local projects such as: documenting the active nature and style of deformation along the (blind) Serra thrust fault in southwest San Francicso (Drew Kennedy); Tectonic geomorphology and paleoseismic behavior of the southern Rodgers Creek fault (Carrie Randolph-Loar); correlation and uplift rates of late Pleistocene marine terraces along the Seal Cove fault (Mitch Monroe); Geophysical mapping of serpentinite bodies in the San Francisco Presidio (Joe Pesche); and mapping and Ar/Ar dating of coast range volcanic rocks at Burdell Mountain with implications for long-term offset on the East Bay fault system (Rick Ford).


Petra Dekens




Petra Dekens
Assistant Professor of Oceanography
B.A. Marine Biology – University of California, Santa Cruz
MESM (Master of environmental Science and Manangement – UC Santa Barbara
MS Marine Science, UC Santa Barbara
Ph.D. Ocean Sciences – UC Santa Cruz
At SFSU since 2007
Phone: (415) 338-6015
Office: TH 623
E-mail: dekens@sfsu.edu

Research and/or Teaching Area: Paleoceanography / Paleoclimatology

Direct temperature measurements only extend about two hundred years, during which time climate variations were relatively minor. Paleoclimate research is therefore required to put the global warming trend of the last decades within the context of the Earth’s dynamic climate system.

 My primary research interest is understanding the mechanisms which sustained a warm climate in the early Pliocene, the most recent period of time when Earth’s temperatures were warmer than they are today for a sustained period of time.  My records of sea surface temperatures (SST) in the tropical and sub-tropical oceans have demonstrated that the worlds upwelling regions, which are very biologically productive and characterized by cool temperatures in the modern ocean, were significantly warmer during the early Pliocene compared to today (water off of California was 9°C warmer!).  As I establish my lab here at SFSU I plan to pursue several research questions to further improve our understanding of the warm pliocene: Are warmer upwelling regions during the early Pliocene associated with major changes in biological productivity?  Are global upwelling regions linked through changes in the ventilated thermocline?  What are the meridional and zonal SST gradients off the Calif







David Dempsey
Professor of Meteorology
B.S. Mathematics and Atmospheric Science, University of California, Davis
Ph.D. Atmospheric Science, University of Washington, Seattle
At SFSU since 1989
Phone: (415) 338-7716
Office: TH 610
Site Manager, Weather Graphics and Simulation Laboratory
E-mail: dempsey@sfsu.edu

Personal Website


Research and/or Teaching Area: Dynamic meteorology, mesoscale meteorology, coastal zone systems

The year was 1999. The dot-com bubble was stretched (almost) to bursting. A national movement toward science education reform was gathering momentum, fueled by grant money and stimulated by new ideas and research about teaching and learning. California had approved a new set of content standards for future high school science teachers. Soon came new standards for future K-8 teachers. At about that time, Karen Grove (then department Chair) and I had become both dissatisfied with traditional science teaching and convinced that improving teacher preparation in science was important. We decided to tap into the money flowing into science education reform. In 2000 we received a grant from NASA-NOVA, and in 2002 we landed another one, from NSF, and in 2009 a third, also from NSF. These grants have led to the creation or modernization of several geoscience courses: GEOL/METR/OCN 405, "Planetary Climate Change", which investigates the dynamics of climate change and is aimed at geosciences majors and future high-school science teachers; a course for future K-8 teachers; and the Department's introductory geology, oceanography, and meteorology courses for non-majors. The changes to the latter also dramatically upgraded the preparation and support that we provide to our graduate teaching assistants. Finally, the grants also paid for 35 networked Mac laptop computers and prompted the remodeling of Rooms 604 and 513 of Thornton Hall to create new, combination classroom/computer labs, which have stimulated teaching experiments in several additional classes. (However, it has also meant more work--maybe too much!--for me as the computer lab administrator.)

My research has largely been limited to summers, when I sometimes visit the National Center for Atmospheric Research in Boulder, CO to contribute to the ongoing development and testing of a state-of-the-art computer forecasting model, the Weather Forecasting and Research (WRF) model.






Oswaldo Garcia
Professor of Meteorology
B.S. Applied Geophysics, Columbia University
M.S. and Ph.D, Atmospheric Science, State University of NY at Albany
At SFSU since 1988
Phone: (415) 338-1778
Office: TH 609
E-mail: ogarcia@sfsu.edu

Research and/or Teaching Area: Physical meteorology; tropical climatology, applications of GPS technology to meteorology

In Fall 2012 I completed eight years as chair of the Department of Geosciences. This position helped me get a broader perspective on the issues facing geoscience education across the country. Natural disasters such as the 2011 Japan quake and tsunami and hurricane Sandy in 2012 highlight the need to to provide our students with best possible education so they can contribute to the solution of these problems

In recent years I have had the opportunity to visit Cuba, my native country, and to establish collegial working relationships with Cuban meteorologists. I am working with American colleagues to extend to Cuba the network of ground based GPS receiving stations (known as "COCONet") that can detect in real time the amount of water vapor present in the atmosphere. Since water vapor is the "fuel" of hurricanes, the COCONet network should help in improving hurricane forecasting in the Caribbean basin. With the hep of two of our students, I am also looking at the practical uses of soundings of the atmosphere obtained by the COSMIC satellite network that use GPS technology to obtain data that was previously only available through weather balloons.






Newell (Toby) Garfield,
Director, Romberg Tiburon Center
Professor of Oceanography
B.A. Geology - Williams College
M.A. Marine Sciences - University of Delaware
Ph.D. Physical Oceanography - University of Rhode Island
At SFSU since 1998
Phone: (415) 338-1209; (415) 338-1963
Offices: 515 Thornton Hall and RTC 36-503A
E-mail: garfield@sfsu.edu

Personal Website


Research and/or Teaching Area:
Hydrodynamics of coastal areas and current systems along continental margins

The new undergraduate degree in meteorology and oceanography means that my teaching duties are being shuffled. For my first four years at SFSU I taught the GE class, Geol 102: Introduction to Oceanography and a series of graduate oceanography classes that attracted mostly students pursuing the MS in Marine Biology. In addition I developed a class to teach the MATLAB programming language. With the new degree I will start teaching more majors classes. The first was offered last spring, Metr 200 and 201, a combined course to introduce atmospheric and oceanic dynamics. The students especially appreciated a day cruise on the R/V Point Sur. Well, most of them appreciated the cruise....This academic year I have the opportunity of being the visiting faculty at the Moss Landing Marine Laboratories. Bill Broenkow retired last year so I am teaching the Introductory Physical Oceanography Course while the search is on for his replacement. I’m enjoying working with new colleagues and seeing another facet of the CSU. My research is taking an unexpected turn. About every 30 years the oceanography community undergoes a national self examination. The present self evaluation (http://www.ocean.us/ and http://www.pewoceans.org) is coming out strongly in support of creating regional associations for operating coastal ocean observatories. One important component will be monitoring coastal surface circulation using a technology referred to as HF radar (high frequency). We set up an experimental array at RTC in 2000 using a new instrument called CODAR (Barrack et al., Oceans 2000). Since then I have been looking for funding opportunities to create a permanent CODAR installation in San Francisco Bay and the Gulf of the Farallones. Federal money has been available for two other regional observatories. One is CI-CORE (Center for Integrative Coastal Observation, Research and Education, http://mlml.calstate.edu/cicore) which is a California State University federal entitlement initiative to create a monitoring network at CSU campuses aimed at serving local regulatory agencies and providing educational tools. Kenneth Coale, Moss Landing Marine Laboratories, is the head of the program and, as of last August, I am the coordinator. The second is NOAA funding to hire a person to help organize a central California “Regional Association” to be the liaison between federal funding sources and the observing work in California. I’m serving on the executive council of this group and am working to see that all three efforts pull together to make sure central California is a national leader in coastal observing. These are exciting times to be active in coastal oceanography and in a department that has created a new degree directly related to these challenges. Certainly no complaints about not enough to do.








Karen Grove
Chair, Department of Geosciences
Professor of Geology and Oceanography
B.S. Geology - University of Maryland
Ph.D. Geology - Stanford University
At SFSU since 1990
Phone: (415) 338-2061
Office: TH 509
E-mail: KGrove@sfsu.edu

Personal Website


Research and/or Teaching Area:  Sedimentation and tectonics, coastal sedimentary environments, Quaternary geology, tectonic geomorpholo

My research interest is the interpretation of the tectonic evolution of an area based on studies of sediments and geomorphic features. Since 1992, I have been investigating the Quaternary history of the Point Reyes region, located about an hour north of San Francisco. The main tectonic feature in this area is the San Andreas fault, which lies in a linear valley between the Point Reyes Peninsula and the Marin County mainland. Recently, my students and I have studied Late Pleistocene estuarine and alluvial sediments that were deposited in the fault valley to reconstruct the paleogeography of the fault zone; we have studied marine terraces on the western flank of the Point Reyes Peninsula to evaluate the role of contractional deformation in the region; and we have studied offshore seismic profiles to better understand the history of fault activity. We have also studied the Quaternary history of the area along the western edge of San Francisco by studying the ~2-km-thick Merced Formation. Currently, I am working on a book that is a geologic field guide to Patagonia. This project builds on investigations during my 2006 Fulbright in Chile and my 2012 sabbatical in Argentina. I am also interested in developing new techniques to more actively engage students in the process of science. In 2010-2012 two of my colleagues and I had a grant from the National Science Foundation to create a new computer teaching lab, create new inquiry-based laboratory activities, and provide better support for graduate teaching assistants and other instructors teaching introductory-level geoscience courses. In the late 1990s, I pioneered an online technique, now called just-in-time teaching, that helps students be better prepared for their classes each week. I continue to incorporate new techniques such as in-class clickers for peer instruction. .








Jason Gurdak
Assistant Professor of Geology
B.S. Geology - Bates College
M.S. Environmental Science and Engineering - Colorado School of Mines
Ph.D. Geochemistry - Colorado School of Mines
At SFSU since 2009
Phone: (415) 338-6869
Office: TH 537/538
E-mail: jgurdak@sfsu.edu

Personal Website


Research and/or Teaching Area:  Hydrogeology, vadose zone hydrology, aqueous geochemistry, groundwater contamination, hydroclimatology, and climate change/variability effects on water resources

My research goals are the improved understanding of processes that affect the sustainability of water resource in California and the western United States. Similar to other arid and semiarid regions, an available and clean source of water is especially critical for sustainable society. However, many water resources are threatened because of depletion and contamination from human activities and climate variability and change. In particular, my research focuses on processes that affect groundwater quantity and quality. Groundwater is an essential component of the global water cycle, the largest source of global freshwater, and is one of the most important natural resources because it is the primary source of drinking water to over one quarter of the population worldwide. Groundwater provides much of the Nation’s public and private water supply, supports agricultural and industrial economies, and contributes flow to rivers, lakes, and wetlands. In California, groundwater is the largest source of freshwater and is pumped at rates that exceed groundwater use in all other States. Groundwater enhances water supplies because it has a capacity to help meet water needs during periods of increased demand during drought and when surface-water resources are close the limits of sustainability. Therefore, it is critical to improve understanding of groundwater interactions within the global water cycle, supports ecosystems and society, and responds to complex human activities that are coupled to natural-climate variability (such as the El Niño/Southern Oscillation) and human induced climate change. To address these concerns, my students and I use field, laboratory, and modeling-based research to answers critical questions about the many process-level controls on groundwater quantity and quality in vulnerable aquifer systems in agricultural, coastal, urban, and alpine settings. 






Mary Leech
Assistant Professor of Geology
B.S. Geology - San Jose State University
Ph.D. Geological and Environmental Sciences - Stanford University
At SFSU since 2005
Phone: (415) 338-1144
Office: TH 515
E-mail: leech@sfsu.edu

Personal Website

Research and/or Teaching Area: Petrology, geochemistry, geochronology, the tectonics of mountain building, and natural hazards

My research involves field work that has taken me to mountain belts all over the globe - the Indian Himalaya, the Dabie-Sulu belt in eastern China, the Scandinavian Caledonides of Norway, the Urals Mountains in Russia and the Kokchetav massif in Kazakhstan. While each is unique, these mountain belts have one thing in common: ultrahigh-pressure eclogite-facies rocks. The eclogites form in subduction zone complexes in the suture zones of mountain belts (where two continents are essentially stitched together) and record a complete pressure-temperature-time history from comprising the edge of a continent, to subduction into the upper mantle and then the return path back to the surface. An ever-increasing number of these subduction zone complexes contain evidence that eclogites were subducted to depths in the upper mantle where pressures are great enough to form microscopic diamond (>100 km or >70 miles) thus making them ultrahigh-pressure rocks. Study of these subduction zone complexes involves investigation into not only the petrology and geochemistry of these rocks but also large-scale processes of continental collision and subduction, crust-mantle interactions and the tectonics of mountain building.

My research has required a variety of analytical techniques, in which undergraduate and graduate students have already been involved: radiometric dating (U-Pb dating of zircon on an ion microprobe [SHRIMP] using cathodoluminescence imaging, and apatite fission-track dating); establishing mineral chemistry using an electron microprobe; investigating the graphite-diamond transition using x-ray diffraction, raman and infrared spectroscopy, and scanning and transmission electron microscopy; and stable isotope analyses of carbon, oxygen, and nitrogen using infrared CO2 and in-situ UV laser ablation mass spectrometry and on an elemental analyzer.





John Monteverdi
Professor of Meteorology
B.A. Geology - University of California, Berkeley (1968)
M.A. Geography/Climatology - University of California, Berkeley (1970)
Ph.D Geography/Climatology - University of California, Berkeley (1979)
At SFSU since 1979
Phone: (415) 338-7728
Office: TH 613
Geosciences Web Site Manager
E-mail: montever@sfsu.edu

Personal Website


Research and/or Teaching Area:  Synoptic and mesoscale meteorology, severe weather, weather analysis and forecasting, coastal zone meteorology

I have been interested in unusual storms since my childhood, particularly after the disastrous storms of 1955 caused so much flooding in California. Although severe and unusual storms in California remained an interest of mine that blossomed into an area of research, my specific research thrust lies in the area of tornadic thunderstorms, particularly tornadic supercells. Since 1991, I have published eight studies in the refereed literature, have had seven conference presentations and four Technical Memoranda publlished by the National Weather Service in the area of tornadic storms in California. In addition, I was co-coordinator or session chair of the American Meteorological Society's (AMS) Conference on Severe Local Storms in 1996, 1998, 2000, 2004 and 2006, and served on the Severe Local Storms Committee of the AMS for the period 1996-1998.

The major thrust of my research in this area was to show that supercell tornadic thunderstorms can and do occur in California and to bring forecasting techniques on such storms to the National Weather Service Forecast Offices in this part of California. My refereed publications have included co-authors with the National Severe Storms Lab, the Storms Prediction Center, the National Weather Service and with undergraduate and graduate students at San Francisco State University.I n the midst of all this research activity, I maintain an active teaching and administrative role in the Department, the latter culminating in the approval of a BS in Atmospheric and Oceanic Sciences and a Certificate in Meteorology for Broadcasters. Finally, in this guise, in Spring 2003, I was happy to serve as catalyst for the naming of the Department of Geosciences as the site for the new Satellite Field Office of the NWS’s Weather Forecast Office in Monterey.







David Mustart

Professor of Geology
B.S. Trace Element Geochemistry-University of British Columbia
Ph.D. Geology - Stanford University
At SFSU since 1971
Phone: (415) 338-7729
Office: TH 620
E-mail: mustart@sfsu.edu

Personal Website


Research and/or Teaching Area: Experimental petrology, geochemistry, economic geology, and soils geology

How do you keep this man down? After everyone in the department gave him up for dead, and started the monumental task of cleaning out his office, David suddenly reappeared at the beginning of last semester, and immediately assumed the grueling schedule that has been his modus operendi (Matt will explain the etymology) In his customary whirlwind fashion David is characteristically everywhere at once. When he's not teaching Chas's mineralogy course, taking on Lisa's historical geology, or stimulating students in physical, he's chairing the departmental curriculum committee and contributing to space and HRTP issues. David is able to maintain his ambitious travel schedule, having visited, during this past semester alone, Singapore, Zimbabwe, Tasmania, Tierra del Fuego and Uzbekistan. Locally he's been to Redwood City and Pacifica, and confides in me his ambition to see Milpitas. He's still committed to studying granite pipes, apparently oblivious to the fact that the revised building codes now require that all plumbing be either copper or approved plastic. This does not dissuade geology majors and graduate students, however, who are eager to work under his inspired tutelage. He regularly tutels Charlene, and is overseeing Matt's dictionary of esoterica (a euphemism for geology terms you'll only find in Norway).







Raymond Pestrong
Professor of Geology
B.S. Geology - City College of the City University of New York
M.S. Geology (Civil Engineering Minor) - University of Massachusetts
Ph.D. Geology - Stanford University
At SFSU since 1966
Phone: (415) 338-2080
Office: TH 623
E-mail: rayp@sfsu.edu

Personal Website


Research and/or Teaching Area: Environmental geology, geomorphology, engineering geology, geosciences and the arts, multimedia in education, tideland studies

I am most interested in what we can learn about ourselves through an investigation of Earth processes, an area identified as "Earth Metaphor." This is necessarily a broad-ranging topic, encompassing the connections that exist among the Geosciences and virtually every discipline that involves human interactions with the Earth. The aesthetic qualities of distinctive geologic patterns and forms concern me at present, both from a conceptual base, and as a vehicle for generating student interest in the Geosciences. I am also involved in documenting the multisensory nature our planet, and incorporating these elements as part of a more traditional Earth Sciences pedagogy.





Leonard Sklar
Assiociate Professor of Geology

B.S. Applied Science - New York University
B.E. Civil Engineering - Cooper Union
M.S. Civil Engineering - University of California, Berkeley
Ph.D. Geology - University of California, Berkeley
At SFSU since 2003
Phone: (415) 338-1204
Office: TH 622
E-mail: leonard@sfsu.edu

Personal Website(Under Construction)


Research and/or Teaching Area: Fluvial, Hillslope, and Tectonic Geomorphology; Engineering Geology; Hydrology; Ecosystem Restoration

Together with my student collaborators, I am asking both basic and applied research questions about the physical processes that shape the surface of the earth and other planetary bodies.  We work at both the geological times scale at which landscapes evolve and the much shorter engineering time scale at which humans create and solve problems.  We use a spectrum of research approaches, including field observation and experimentation, laboratory physical modeling, development of theoretical models, and numerical landscape analysis and simulation. 

Recent and current research questions include: How do rivers cut through bedrock to create valleys and limit the heights of mountains? How can we better manage sediment to restore aquatic ecosystems downstream of dams?  How are river channels carved by liquid methane into water ice on Saturn’s frozen moon Titan?  What are the feedbacks between biology and geomorphology in a desert travertine stream?  What controls the size distribution of sediments supplied by hillslopes to river channels? What are the linkages between form and process in bedrock landscapes?

I teach courses in Geomorphology and Engineering Geology, and in quantitative methods applied to geoscience problems at both the undergraduate and graduate level.




Lecturers

Picture Coming Soon

Matthew Horrigan


Research and/or Teaching Areas:  Coming Soon

 







Jan Null
Lecturer of Meteorology
B.S. Atmospheric Sciences - University of California, Davis
M.A. Geography/Climatology - San Jose State University
Email: jnull@ggweather.com

Personal Website


Research and/or Teaching Area:  Weather analysis and forecasting, California and Bay Area weather and climate

In addition to the ongoing real-time study of the processes of California weather and climate my primary research interest involves the relationship of El Nino to California weather and climate. El Nino and other recurring climate patterns like PDO and MJO can have a profound influence on the state, its people and economy. My works seeks to understand these relationships and effectively communicate them not only to the academic community but also to the media and public. I also continue to research the issue of vehicular temperatures and the incidence of child fatalities due to hyperthermia.





Bridget Wyatt
Full-time Lecturer
B.S. Earth Science - University of California, Santa Cruz
M.S. Geology - San Jose State University
At SFSU since 2004
E-mail: bwyatt@sfsu.edu
Phone: (415) 338-1209
Office: TH517

Research and/or Teaching Areas: Structural Geology, Tectonics, Earthquakes, and Geoscience Education

Bridget's most recent geological research involved an investigation of Plio-Pleistocene deformation at Alvord Mountain within the Mojave Block of Southeastern California. This was done to assist in a better understanding of fault mechanics relating to the San Andreas fault and plate boundary, which lies south of the field area. The results of this research was presented at a Cordilleran Geological Society of America meeting in Boise, ID in 2004 and published as part of her Masters thesis research. Currently, she is involved in research relating to Geoscience Education with colleagues in this department, at Stanford University and at San Jose State University.

In teaching, her interests primarily lie in figuring out ways to get students more excited and aware of themselves and their geological surroundings. She teaches the following courses: Introduction to Geology (GEOL100), Introduction to Meteorology (METR100), Introduction to Oceanography (OCEN100), The Violent Earth (GEOL302), and The Violent Ocean and Atmosphere (METR302).

 


Adjunct Faculty

Geology

 


 

Robert
						      Abrams




Leora Nanus
Adjunct Assistant Professor of Geology and Research Scientist
B.S. Earth Science – University of California, Santa Cruz
M.S. Geology – Western Washington University
Ph.D. Geography – University of Colorado, Boulder
At SFSU since 2009
Office: TH 538
E-mail: lnanus@sfsu.edu

Personal Website

 





Lisa White
Adjunct Professor of Geology
B.A. Geology - San Francisco State University
Ph.D. Geology - University of California, Santa Cruz
At SFSU since 1990

Director of Education and Outreach
UC Museum of Paleontology
1101 Valley Life Sciences Bldg. #4780
Berkeley, CA 94720-4780
E-mail: lwhite@sfsu.edu
Phone: 510-664-4966

SF-ROCKS website


Research and/or Teaching Area: Micropaleontology, paleoceanography, stratigraphy, historical geology

Lisa was a member of the Geosciences faculty at San Francisco State for 22 years, including 4 years as Associate Dean of the College of Science and Engineering and 3 years as Associate Dean of Graduate Studies at San Francisco State. In the summer of 2012 Lisa accepted a new job at UC Berkeley as the Director of Education and Outreach for the UC Museum of Paleontology where she can combine her love of fossils and science education. Lisa will remain active in the Geosciences Department advising students and directing the SF-ROCKS program.



Oceanography

 


 






Dana Wingfield
Adjunct Assistant Professor of Oceanography and Research Scientist
B.A. Environmental Science - University of Virginia
Ph.D. Ocean Science - University of California, Santa Cruz
At SFSU since 2010
Office: TH 517
Email: danawing@sfsu.edu


Research and/or Teaching Area: oceanography, satellite oceanography, coastal processes, sustainable ecosystem management

Dana's primary research interests span a cross-disciplinary approach to marine and coastal science. With a focus on using satellite oceanography and coastal observation systems, her research involves the development of analytical models of physical-biological coupled dynamics in the nearshore environment. This is especially important as the coast represents the nexus between the land-sea interface, absorbing the impacts of human activities and natural disasters. Using such existing information on wave climate, coastal processes and sea-level change, species distribution, land use and population density, and climate change scenarios, spatio-temporal models can be developed to incorporate predictive models for risk assessment within the coastal zone. Specifically, Dana's research encompasses the identification of (1) anthropogenic impacts and natural events that are most likely to trigger hazardous scenarios, (2) areas at greatest risk, and (3) effective mitigation strategies for current and future resilience. Such strategies must not only provide decision support tools an ecosystem-based approach for marine resource management, but also be dynamic enough to maximize human and ecosystem adaptation to climate variability and sea-level rise.


Emeritus Faculty

Geology






Charles Bickel
Professor of Geology
B.A. Geology - Harvard College
Ph.D. Geology - Harvard University
At SFSU since 1971
Phone: (415) 338-1963
Office: TH 521
E-mail: bickel@sfsu.edu

Research and/or Teaching Areas:
Igneous and metamorphic petrology, lunar and extraterrestrial geology, geochemistry,mineralogy

Chas Bickel opted for an early retirement, and so the Fall 2005 semester was his last as a full time faculty member in Geosciences. Petrology has always been an area where our majors have benefited enormously from his expertise, and an area in which, once our students have gone on to grad school or employment, they have consistently been able to demonstrate their competence.







Jon Galehouse
B.S. Geology-College of Wooster
Ph.D. Geology- University of California, Berkeley
Appointed 1967
Emeritus since 1996

Research and/or Teaching Areas: Structural Geology and Earthquakes

Jon Galehouse studied fault creep on local Bay Area faults - he monitored creep movements, especially on the Hayward and Calaveras faults, and had numerous funded research grants from the USGS. He employed numerous students for many years, and some of them are still continung the studies, which are now overseen by Karen Grove and John Caskey.






Steve Kirsch
B.S. Geology- Pennsylvania State University
Ph.D. Geology- University of California, Berkeley
Appointed 1965
Emeritus since 1989


Research and/or Teaching Areas: Mineralogy and Optical Mineralogy

Steve Kirsch was most interested in lattice structure models of minerals, and created many examples, most of which are still in use in the Department's curriculum. He mapped regions in western Nevada and spent parts of each summer in that region. His avocation is wine making.







York Mandra
Professor of Geology
B.A. Paleontology - University of California, Berkeley
M.A. Geology - University of California, Berkeley
Ph.D. Geology - Stanford University
At SFSU since 1954
Phone: (415) 338-1144
Office: TH515
E-mail: ytmandra@sfsu.edu

Research and/or Teaching Area:
Micropaleontology, Societal problems of energy

It's always seemed as though York was operating on his own personal geologic time scale as he continued his career in geosciences here at San Francisco State. Not only did he help create our department and serve as its head during its critical formative years, but he also has the distinction of being the faculty member on our campus with the longest active teaching record. However, even York is a mere mortal, and is beginning to feel the effects of the aging process. This past semester he had to cut short his full teaching schedule, for health reasons, and has been urged by his doctor to take the Spring, 2004 semester off to rest and recuperate. We wish him well and eagerly await his decision about how he will continue his association with our department.







Erwin Seibel,

Professor of Oceanography
B.S. Geology - City College of the City University of New York
M.S. Oceanography - The University of Michigan
Ph.D. Oceanography - The University of Michigan
At SFSU since 1979
Phone: (415) 338-2206
Office: TH621
E-mail: Eseibel@sfsu.edu

Research and/or Teaching Area: Coastal dynamics, interrelationship of the biological, chemical, geological and physical characteristics of the nearshore system, geophysical investigations, fresh water resources, marine geology, estuarine studies

What I have enjoyed most since returning to the department after being Dean of Undergraduate Studies and serving as Associate Director of the Western Association of Schools and Colleges is being around students and Science College and department colleagues. It is nice to be back in the classroom and back dabbling in some research especially thinking again about the processes that might contribute to the formation of beach cusps. I have been interested in the formation and denudation of beach cusps my entire professional career. I now think that perhaps the same mechanism that works to form nearshore ice volcanoes might be the contributing mechanism for beach cusp formation namely the unequal distribution of wave height along storm generated waves or the effect of internal waves on moderating wave heights at regular and predictable intervals. I plan to test both of these ideas out this spring. As many of you who know me staying away from policy and policy issues is difficult so it should come as no surprise that over the last five years I have remained involved in policy development and implementation of said policy. I worked behind the scenes in the formulation of some of the ideas in the newly revised master plan for higher education here in California and while at WASC as well as when I returned to SFSU I played a major role in the reformulation of how universities are evaluated during the accreditation process. The new design focuses both on the ability to deliver what it says it delivers as well as how effective is the education that a university says it delivers. Both of these undertaking were great opportunities to work with colleagues across disciplines, from across the country and worldwide. I had a great time and the products were worth the efforts. At State and at the prompting of David Mustart I reinvolved myself in General Education and have chaired that council for the last two and a half years. The result has been the completion of a restatement of General Education Policy on campus as well as the initiation of a review of all of GE. A monumental task indeed but the good news is that the process is well underway and the light at the end of the tunnel is very bright. The future looks even brighter as I have renewed my commitment to a number of research directions working with colleagues like Toby Garfield and others here on campus as well as with some longtime colleagues in DC.







Raymond Sullivan
Professor of Geology
Emeritus Since 2003
B.Sc. Geology- University of Sheffield
Ph.D. Geology- University of Glasgow
Appointed 1962
Emeritus since 2003

Personal Website


Research and/or Teaching Area: Stratigraphy

Retirement has opened up new challenges and opportunities. I am enjoying the freedom to explore new research areas and to travel to interesting places. I still maintain an office in the department and attend many of the lectures and seminars. I teach the occasional geology class mainly at CSU Chico where I fill in for my son, Morgan, from time to time when he is away attending a meeting or doing field work. I have remained active in my studies of Tertiary rocks of northern California. Morgan and I continue to lead field trips to the Black Diamond Mines Regional Preserve. We are expanding our work of the Eocene rocks on the north side of Mount Diablo into the subsurface of the Sacramento basin. We have focused our research on the application of sequence stratigraphy to the depositional setting and reservoir characterization of the lower Tertiary succession in the southern part of the basin. We presented our research at the National meeting of AAPG in Salt Lake City and the Pacific Section meeting at Long Beach in 2003.

My interest in the coal-rich deposits in the Domengine Formation of California has encouraged me to travel back to Europe and my roots in Wales in order to visit other coal mining regions. Over the past year, I have many several visit to the South Wales and Somerset coalfields. While in Somerset, I took the opportunity to follow in the footsteps of William Smith using the book “The Map that changed the World” as my guide. I also spent some time in the excellent coal mining exhibits in museums in Munich and Prague. I even visited my PhD thesis area in Pembrokeshire this winter after an absence of over 40 years. I worked in the Carboniferous Limestone of this beautiful part of the coast of southwest Wales from 1957-60 while a graduate student at the University of Glasgow. The study area is now part of the Pembrokeshire National Park. I was able to look again with more experienced eyes at the rocks and structures exposed in the coastal cliffs. I stood at the section in Tenby that was the site of my first published paper in the Geological Magazine in 1964. I looked critically at the section and hoped that I got it right the first time. My over all feeling was that I had come along way since those far off days and remembered the old saying “rocks don’t lie”.







John Tyler
B.S. Geology-University of Wisconsin
M.S. Geology –Virginia Polytechnic Institute
Ph.D. Geology-University of Michigan
Appointed 1966
Emeritus Since 1992

.

Research and/or Teaching Area: Structural Geology, Sedimentology and Stratigraphy

Jon Tyler studied the Pigeon Creek Formation along the San Mateo coast, and published papers on its origin.

Revised by John Monteverdi / Thursday, 3/14/13 10:07 AM / montever@sfsu.edu

SF State
	Home